Ant Colony Optimization of Interval Type-2 Fuzzy C-Means with Subtractive Clustering and Multi-Round Sampling for Large Data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...

متن کامل

Successive Optimization of Interval Type-2 Fuzzy C-Means Clustering Algorithm-based Fuzzy Inference Systems

A design methodology of interval type-2 fuzzy c-means clustering algorithm-based fuzzy inference systems (IT2FCMFIS) is introduced in this paper. An interval type-2 fuzzy c-means (IT2FCM) clustering algorithm is developed to generate the fuzzy rules in the form of the scatter partition of input space. And the individual partitioned spaces describe the fuzzy rules equal to the number of clusters...

متن کامل

OPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM

This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...

متن کامل

Subtractive Fuzzy C-means Clustering Approach

To identify T-S models, this paper presents a so-called “subtractive fuzzy C-means clustering” approach, in which the results of subtractive clustering are applied to initialize clustering centers and the number of rules in order to perform adaptive clustering. This method not only regulates the division of fuzzy inference system input and output space and determines the relative member functio...

متن کامل

Fuzzy c-means clustering methods for symbolic interval data

This paper presents adaptive and non-adaptive fuzzy c-means clustering methods for partitioning symbolic interval data. The proposed methods furnish a fuzzy partition and prototype for each cluster by optimizing an adequacy criterion based on suitable squared Euclidean distances between vectors of intervals. Moreover, various cluster interpretation tools are introduced. Experiments with real an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Advanced Computer Science and Applications

سال: 2019

ISSN: 2156-5570,2158-107X

DOI: 10.14569/ijacsa.2019.0100106